The asymptotic number of claw-free cubic graphs
نویسندگان
چکیده
Let Hn be the number of claw-free cubic graphs on 2n labeled nodes. In an earlier paper we characterized claw-free cubic graphs and derived a recurrence relation for Hn. Here
منابع مشابه
Counting Claw-Free Cubic Graphs
Let Hn be the number of claw-free cubic graphs on 2n labeled nodes. Combinatorial reductions are used to derive a second order, linear homogeneous differential equation with polynomial coefficients whose power series solution is the exponential generating function for {Hn}. This leads to a recurrence relation for Hn which shows {Hn} to be P -recursive and which enables the sequence to be comput...
متن کاملOn the Erdös-Gyárfás conjecture in claw-free graphs
The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs.
متن کاملBounds on total domination in claw-free cubic graphs
A set S of vertices in a graphG is a total dominating set, denoted by TDS, ofG if every vertex ofG is adjacent to some vertex in S (other than itself). The minimum cardinality of a TDS ofG is the total domination number ofG, denoted by t(G). IfG does not contain K1,3 as an induced subgraph, then G is said to be claw-free. It is shown in [D. Archdeacon, J. Ellis-Monaghan, D. Fischer, D. Froncek,...
متن کاملPerfect Matchings in Claw-free Cubic Graphs
Lovász and Plummer conjectured that there exist a fixed positive constant c such that every cubic n-vertex graph with no cutedge has at least 2cn perfect matchings. Their conjecture has been verified for bipartite graphs by Voorhoeve and planar graphs by Chudnovsky and Seymour. We prove that every claw-free cubic n-vertex graph with no cutedge has more than
متن کاملClique-Transversal Sets in Cubic Graphs
A clique-transversal set S of a graph G is a set of vertices of G such that S meets all cliques of G. The clique-transversal number, denoted τc(G), is the minimum cardinality of a clique-transversal set in G. In this paper we present an upper bound and a lower bound on τc(G) for cubic graphs, and characterize the extremal cubic graphs achieving the lower bound. In addition, we present a sharp u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 272 شماره
صفحات -
تاریخ انتشار 2003